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1. Introduction

The quality of fine-rolled sheets depends to a significant extent
on the surface quality of the work rolls, which are subject to
continuous wear. Therefore, regular reconditioning of these rolls is
necessary in order to ensure a constant surface quality of the
sheets. The occurring wear differs locally over the roll surface and
its dimension normal to the surface is in the low micrometer or
nanometer range. Hence, every section of the roll surface must be
inspected and, if necessary, machined during the reconditioning
process. The surface assessment of the rolls during reconditioning
is currently performed as a non-automated, visual inspection by
the operator. Therefore, as a first step towards an automatic control
of the reconditioning process, an in situ capable surface quality
sensor has to be developed for inspecting large surface areas in a
short time in the order of >0.5 m2/min.

Commonly applied tactile probes cannot meet the speed
requirement and can lead to damages on the smooth roll surfaces.
Furthermore, common optical topography measurements such as
with white light interferometry are too slow due to the necessary
scanning over the large roll dimensions of typically 0.3�0.6 m � 0.7
–1.2 m. However, optical scattered light measurement techniques
can meet the measurement demands [1], and especially speckle-
based methods are known to measure and evaluate the surface
roughness of large areas at high speed [2,3].

1.1. Optical roughness measurement techniques

Goodman showed theoretically that the roughness of a cohere
illuminated and observed surface influences the contrast of 

resulting speckle images and suggested contrast-based measu
ment systems [4]. As the surface roughness of the rolls is less than
of the illuminationwavelength, partially developed speckle patte
with lowered contrast ratios occur [5], which prevent a succes
application of these systems on the working rolls. Yoshimura e
and Lehmann presented theoretical approaches for speckle-ba
measurement principles using an already speckled illuminatio
the investigated surface [6,7]. Yoshimura et al. investigated 

application of the measurement principle at transmitting isotro
surfaces [8] whereas Lehmann also considered reflecting 

anisotropic surfaces [7]. Both approaches use the autocorrela
function of the observed speckle images to evaluate their roughn
depending intensity modulations.

Despite the principle demonstration of speckle-based rou
ness measurement sensors in laboratory experiments, only a 

applications for measurements on manufactured surfaces w
reported until today. Pino et al. presented an approach for 

determination of the roughness of manufactured paper sheets
and Dhanasekar et al. showed investigations regarding 

measurement of ground and milled surfaces [10]. However, 

application and characterization of speckle-based measurem
systems for optical roughness measurements of smooth 

curved metal surfaces with a large measurement zone and a h
measurement speed needed to establish an automated recon
tioning process for working rolls is still an open task.
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1.2. Aim and outline

The aim of this article is the experimental proof that an opt
speckle-based roughness sensor meets the requirements in te
of speed and measurement uncertainty for the in situ investiga
of working rolls for fine rolling processes during recondition
Note that the paper particularly focusses on the evaluation 
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rpretation of the measurement results. Section 2 describes
tly the sensor measurement principle, the data evaluation, the
ration to standardized roughness values as well as the results

 theoretical uncertainty estimation. The operating environ-
t, the process and measurement requirements as well as the
ized sensor setup are explained in Section3. The measurement
lts including an experimental uncertainty evaluation are
equently discussed in Section 4 and the conclusions and an
ook are presented in Section 5.

peckle-based roughness measurement

Measurement principle

he measurement principle of the fast, speckle-based rough-
 sensor system is depicted in Fig. 1. A collimated and pulsed
r beam with a Gaussian intensity profile illuminates the sample
ace under a small inclination angle. The reflected light is
ured with a lensless camera in the far field (Fraunhofer region)
the captured, partially developed speckle pattern with
hness depending intensity modulations are evaluated by
ge processing algorithms regarding the average roughness of
illuminated measuring spot.

Image processing

he surface roughness expressed as the optical roughness value
 is characterized by fast image processing of the recorded
kle image intensity modulations. The Ropt value is determined
ree calculation steps as shown in Fig. 2 [2].

irst, the algorithm subtracts the mean intensity offset from the
kle image and then determines the autocorrelation function
) g of the average-free image:

m; DnÞ ¼
PM

m¼1
PN

n¼1½ I m; nð Þ � I
� � � I m þ Dm; n þ Dnð Þ � I

� ��PM
m¼1

PN
n¼1 I m; nð Þ � I

� �2
:

(m, n) represents the pixel intensity at the pixel position (m, n),

The root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ~m2 þ D~n2

q
describes the chosen evaluation dis-

tance from the ACF centre in unit pixels for determining the slope.
Since the shape of the ACF varies in the vicinity of its centre (cf.
Fig. 2), the evaluation distance affects the resulting Ropt value
[3]. Therefore, D ~m and D~n are selected so that the sensitivity of the
roughness measurement system is maximized for the intended
measuring range.

2.3. Roughness calibration

The Ropt values (as empirically calculated values) do not
linearly correlate with the standardized roughness values such as
Sa or Sq. Hence, a sensor calibration with respect to a standardized
roughness value is necessary. This calibration is valid only for the
used ACF evaluation parameters D ~m and D~n, because of their
mentioned influence on the Ropt values (cf. Section 2.2). The
calibration also depends on the used filtering parameters for the
calculation of standardized roughness values from micro-topog-
raphy measurements according to ISO 25178 [11]. Note that no
theoretical relationship between the ACF evaluation parameters
and the filtering parameters exists. In the presented application on
the work rolls, a calibration to standard Sa values with the ACF
evaluation parameters D ~m = 2 and D~n = 0 was chosen. For this
purpose, 100 repeated measurements were carried out on five
reference samples with different surface roughness, which
correspond to the surface structure of the rolls and represent
the expected roughness range. The mean values Roptcalfor each
sample were compared with reference Sacal-values determined
from topography measurements with a chromatic confocal
distance sensor in the same measuring regions on the reference
samples. Fig. 3 shows the results of the sensor calibration in the
range from Sacal = 3 nm to Sacal = 78 nm.

A clear non-linear behaviour of the calibration curve occurs in
particular in the Sa range below 15 nm. When applied to the work
rolls, however, Sa values in the range between 15 and 35 nm are
expected. Therefore, the sensor must only be calibrated for this
range, which can be approximated by the linear relation

Sa ¼ f Roptð Þ ¼ a � Ropt þ b

with the slope a = (206.509 � 0.192) nm/a.u. and the axial intercept

. Schematic illustration of the measurement principle.

. Evaluation scheme of the roughness sensor.

Fig. 3. Calibration of the measurement system determined by comparison with
reference data. The dotted line represents the linear calibration for the considered
measuring range. Note that the uncertainties of the data points are smaller than the
plotted square markers.
d N describe the number of pixels in x- and y-direction of the
ge, I is the average intensity of each image and Dm, Dn give the
lacement for the calculation of the ACF in unit pixel.
ubsequently, the Ropt value is calculated. Its value is the slope
he ACF in the immediate vicinity of the ACF centre. The
ulation is performed in the lateral surface direction desired for
roughness measurement, which is described by the vector
, D~n) in the ACF’s coordinate system

 D ~m; D~nð Þ ¼ 1 � g D ~m; D~nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ~m2 þ D~n2

q :
b = (10.613 � 0.025) nm, see dotted line in Fig. 3. The uncertainties
of the slope and the intercept are derived according to [12] from
the standard deviation s(Roptcal) = 0.0002 a.u. of the Roptcal
calibration measurements and the uncertainty u(Sacal) = 0.2 nm
of the reference roughness measurements given by the reference
sensor manufacturer.

2.4. Theoretical measurement uncertainty

The uncertainty of the measured roughness values is calculated
via uncertainty propagation according to [12] with
2
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including the uncertainty contributions uI(Sa) from the measured
speckle images and ucal(Sa) resulting from the sensor calibration (u
(a) and u(b), see Section 2.3).

In order to obtain an estimation for the theoretically achievable,
minimum measurement uncertainty umin(Sa) of the system, it is
assumed that the components of the sensor system work ideally and
that all systematic deviations are covered by the calibration. Hence,
only random, physically unavoidable sources of uncertainty have to
be considered for the calculation of uI,min(Sa). The following random
influences on the measured pixel intensities I, which contribute via
the evaluation of the speckle images to uI,min(Sa), were taken into
account: photonnoise of the laser, readout noiseof the camerapixels,
dark current noise and intensity quantization during the A/D
conversion of the recorded intensities. The examination showed that
the photon shot noise and the signal quantization make by far the
largest random contributions to the minimum measurement
uncertainty of the considered sensor system. The dominant source
is photon shot noise, while quantization gains a significant influence
only for low mean intensities. The contribution of dark current and
readout noise is negligible [3]. The total contribution of the
considered random influences amounts to uI,min(Sa) = 0.04 nm.

This value is raised by the influences of the calibration
parameter uncertainties u(a) and u(b). Their summed contribution
ucal,min(Sa) is almost as large as the contribution uI,min(Sa), so that
the influence of the calibration on the uncertainty cannot be
neglected. For the setup used in these investigations, an estimated
total uncertainty of umin(Sa) <0.06 nm results for the relevant
roughness value range of 15 nm–35 nm.

3. Experimental measurement setup

The in situ measurement capability of the speckle-based
roughness sensor is tested with three different measurement
series on one roll in a reconditioning station for fine-rolling
working rolls. The first measurement series was captured at one
surface position of the non-rotating working roll in order to
estimate the sensor’s uncertainty in the application environment
for repeated measurements. The other two measurement series
were carried out to investigate the comparability of measurements
on rotating rolls and to find out whether the rotational speed has
an influence on the measurement results.

3.1. Process environment and requirements

The reconditioning station is located on the shop floor level and
is able to treat rolls with diameters of 60 cm and length of up to
1.2 m. The aim of the reconditioning treatment is to restore a
cylindrical geometry of the roll with a homogeneous surface

5 m single-modefibre in order to generate the homogeneous Gaus
beam profile. The beam is collimated and widened to a measurem
spot diameter of 10 mm bya lens system and directed to the measu
surface bya mirror. Thespecular reflected light is captured bya cam
(Sentech STC-CMB2MCL, 8 bit resolution) without a lens as illustra
in Fig.1. The mirror is adjusted to a measuring distance of~100 mm
the camera is connected via a fast cameralink interface to a FP
based image evaluation board, which processes the images pipe-w
pixel by pixel. This configuration ensures evaluation frequencies o
to 340 Hz. In order to avoid motion blur, the triggering of the pu
laser and the camera is adjusted in such a way that pixel illumina
times of less than 1 ms result.

The data acquisition was not triggered with the rotatio
position of the working roll, so that it could not be ensured tha
integer average number of measurement points was recorded
roll revolution. Fig. 4 shows the sensor setup mounted on the lin
guide next to the specular reflecting surface of the working ro
the reconditioning station.

4. Results and discussion

4.1. Measurements on stationary roll

The measurement series with 3300 measurements perform
on a stationary roll shows an empirical standard deviation of ab
0.22 nm, which is clearly above the theoretically estima
minimum measurement uncertainty umin(Sa). An investiga
of the recorded speckle images revealed, that the lar
uncertainty results from intensity profile fluctuations of the u
laser, which influence the mean intensity value. Since no s
fluctuations were observed during the calibration measureme
in the laboratory, it is assumed that the fluctuations are trigge
by variations of the conditions in the production environmen

Due to the pipe structure of the data processing in the FPGA,
required direct subtraction of the intensity mean value is not poss
sothatthesubtractedvalueisestimatedfromthevaluesoftheprev
images. As a result, the intensity fluctuations influence the autoco
lationfunctionsandthusthemeasuredroughnessvalue.This influe
could only be eliminated by changing the evaluation algorithm, wh
wouldreducethemeasurementfrequency(andthusthemeasurem
speed) to a not acceptable level for the reconditioning process.

Despite the additional influences, the measurement uncert
ty of the sensor system for a stationary roll ustat(Sa) = 0.22 nm is 

below the 0.5 nm limit required for the application.

4.2. Measurements at v = 15.5 m/min

Fig. 4. Working roll in reconditioning station with roughness sensor.

uðSaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
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roughness below 30 nm. Therefore, the sensor should exhibit a
measurement uncertainty of the roughness value Sa below 0.5 nm
and should reach a measuring speed of 0.5 m2/min to avoid long
measuring times. The station is equipped with a linear guide to
move the tool in axial direction along the working roll. During the
measurements, the tool is replaced by the sensor.

3.2. Measurement setup

The measurement setup consists of a pulsed laser light source
(wavelength l = 532 nm, pulse length <10ms), which is coupled to a
3

In the first series with a rotating roll, about 10,000 measu
ment points were acquired with 200 Hz during~6.5 revolution
the roll. The aim was to assess the repeatability of 

measurements between the revolutions of the roll. The rota
roll’s low surface speed of v = 15.5 m/min leads to an overlap
circumferential direction of 8.7 mm between two succes
measurement zones with a diameter of 10 mm. This was cho
to prevent strong changes in the roughness signal, aggravating
comparability estimation. Fig. 5 shows the roughness measu
ment results plotted against the rotational position of the roll
the 6 successive revolutions.
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hesectionbetween0� and30� isshowninFig.5asanexampleand
rder to ease the visual estimation of the comparability. The
sured roughness deviations between corresponding rotational
tions are much smaller than the observed variations of the
sured roughness values in circumferential direction during one
revolution. Hence, the observable roughness behaviour in
mferential direction isnotcausedbymeasurement uncertainties,
reflects the local variation of the surface roughness of the roll.
n order to assess the sensor characteristic for the moving roll
ce, the changes of the measured data from revolution to
lution were evaluated. The empirical standard deviation of these
ges amounts to uslow(Sa) = 0.41 nm, which is above the variation
hestationaryroll.Theuncertaintyincreasecanbeexplainedbythe
ing sensor trigger (cf. Section 3.2). The lack of triggering to fixed
tion positions of the roll leads to displacements of the measure-
t zone positions of up to 4 mm in circumferential direction on the
surface. In combination with the existing roughness variations of
roll surface, these measuring zone shifts lead to additional
tions of the measured roughness values. Despite the increased
hness standard deviation, the required measurement uncertainty
0.5 nm is achieved also on moving roll surfaces.

Measurements at v = 87 m/min

n order to demonstrate a surface measurement speed of >0.5 m2/
, a measurement with 200 Hz frequency on a fast rotating roll with
rface speed of v = 87 m/min (corresponding to 0.77 m2/min) was
ormed. Fig. 6 shows a section of the measured roughness values of
nsecutive revolutions plotted against the rotational position of the
In agreement to the measurements with v = 15.5 m/min, the
tions in the circumferential direction are significantly larger than
differences between the values of the individual revolutions.
ce, the observed roughness variations mainly originate from the
ce roughness variation on the working roll.

axial and the circumferential (cf. Section 4.2) measurement zone
displacements in combination with the surface roughness varia-
tions of the roll leads to the observed roughness values with a
periodicity over three roll revolutions. Finally, the standard
deviation of the roughness values amounts to ufast(Sa) = 0.45 nm,
which is similar to the measurements at v = 15.5 m/s.

In summary, all measurements show variations, which are
smaller than the specified uncertainty limit of 0.5 nm.

5. Conclusions

The presented system offers the possibility to perform fast
roughness measurements with a measuring spot of 10 mm diameter
on smooth surfaces with Sa roughness values below 80 nm. Its
applicability for in situ measurements during the reconditioning of
work rolls forfinishing processeswas demonstratedby measurements
onastaticrollandarollrotatingatdifferentspeeds.Themeasurements
on the non-rotating roll showed a measurement uncertainty of
0.22 nm, which is only by a factor of ~3 higher than the estimated
minimum uncertainty. It was elaborated, that these differences mainly
result from observed mean intensity variations between the captured
speckle images. They influence the roughness evaluation algorithm,
which could not be adapted to this problem without decreasing the
measurement frequency, required by the application.

During the measurements on the rotating roll, the measuring
system was able to reproduce the roughness variations during several
revolutions with uncertainties lower than 0.5 nm. The uncertainty
increase compared to the stationary roll could be mainly attributed to
the lack of sensor triggering on the rotational position of the roll. In
addition, no significant velocity influence on the roughness uncer-
tainties could be observed. This very good comparability of the surface
values, which was even achieved at a surface measurement speed of
0.77 m2/min, confirms the applicability of the measuring principle for
the in situ use onworking rolls for rolling processes. Consequently, the
sensor system can be used in the future to establish an automated and
controlled surface treatment of the work rolls.
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